Conexión a una red (7)

Por lo general, los dispositivos de red y los usuarios finales se conectan a una red mediante una conexión Ethernet por cable o una conexión inalámbrica. Consulte la ilustración para ver un ejemplo de topología de referencia. Las LAN que se muestran en la ilustración sirven como ejemplo de cómo los usuarios y los dispositivos de red pueden conectarse a las redes.

Los dispositivos de la oficina doméstica pueden conectarse de la siguiente manera:

  • Las computadoras portátiles y las tablet PC se conectan de forma inalámbrica a un router doméstico.
  • Una impresora de red se conecta mediante un cable Ethernet al puerto de switch en el router doméstico.
  • El router doméstico se conecta al cable módem del proveedor de servicios mediante un cable Ethernet.
  • El cable módem se conecta a la red del proveedor de servicios de Internet (ISP).

Los dispositivos de Sucursal se conectan de la siguiente manera:

  • Los recursos corporativos (es decir, los servidores de archivos y las impresoras) se conectan a los switches de capa 2 mediante cables Ethernet.
  • Las computadoras de escritorio y los teléfonos de voz sobre IP (VoIP) se conectan a los switches de capa 2 mediante cables Ethernet.
  • Las computadoras portátiles y los smartphones se conectan de forma inalámbrica a los puntos de acceso inalámbrico (WAP).
  • Los WAP se conectan a los switches mediante cables Ethernet.
  • Los switches de capa 2 se conectan a una interfaz Ethernet en el router perimetral mediante cables Ethernet. Un router perimetral es un dispositivo que se encuentra en el perímetro o el límite de una red y crea rutas entre esa red y otra red, por ejemplo, entre una LAN y una WAN.
  • El router perimetral se conecta al proveedor de servicios (SP) de una WAN.
  • El router perimetral también se conecta a un ISP para propósitos de respaldo.

Los dispositivos del sito Central se conectan de la siguiente manera:

  • Las computadoras de escritorio y los teléfonos VoIP se conectan a los switches de capa 2 mediante cables Ethernet.
  • Los switches de capa 2 se conectan de forma redundante a los switches multicapa de capa 3 con cables Ethernet de fibra óptica (conexiones anaranjadas).
  • Los switches multicapa de capa 3 se conectan a una interfaz Ethernet en el router perimetral mediante cables Ethernet.
  • El servidor del sitio web corporativo se conecta a la interfaz del router perimetral mediante un cable Ethernet.
  • El router perimetral se conecta al SP de una WAN.
  • El router perimetral también se conecta a un ISP para propósitos de respaldo.

En las LAN de los sitios Sucursal y Central, los hosts se conectan a la infraestructura de red de forma directa o indirecta (a través de WAP) mediante un switch de capa 2.

Mecanismos de reenvío de paquetes (6)

 Mecanismos de reenvío de paquetes

Los routers admiten tres mecanismos de reenvío de paquetes:

  • Switching de procesos: es un mecanismo de reenvío de paquetes más antiguo que todavía está disponible para los routers Cisco. Cuando un paquete llega a una interfaz, se reenvía al plano de control, donde la CPU hace coincidir la dirección de destino con una entrada de la tabla de routing y, a continuación, determina la interfaz de salida y reenvía el paquete. Es importante comprender que el router hace esto con cada paquete, incluso si el destino es el mismo para un flujo de paquetes. Este mecanismo de switching de procesos es muy lento y rara vez se implementa en las redes modernas.
  • Switching rápido: este es un mecanismo frecuente de reenvío de paquetes que usa una memoria caché de switching rápido para almacenar la información de siguiente salto. Cuando un paquete llega a una interfaz, se reenvía al plano de control, donde la CPU busca una coincidencia en la caché de switching rápido. Si no encuentra ninguna, se aplica el switching de procesos al paquete, y este se reenvía a la interfaz de salida. La información de flujo del paquete también se almacena en la caché de switching rápido. Si otro paquete con el mismo destino llega a una interfaz, se vuelve a utilizar la información de siguiente salto de la caché sin intervención de la CPU.
  • Cisco Express Forwarding (CEF): CEF es el mecanismo de reenvío de paquetes más reciente y más utilizado del IOS de Cisco. Al igual que el switching rápido, CEF arma una base de información de reenvío (FIB) y una tabla de adyacencia. Sin embargo, las entradas de la tabla no se activan por los paquetes como en el switching rápido, sino que se activan por los cambios, como cuando se modifica un elemento en la topología de la red. Por lo tanto, cuando se converge una red, la FIB y las tablas de adyacencia contienen toda la información que el router debe tener en cuenta al reenviar un paquete. La FIB contiene búsquedas inversas calculadas previamente, información de siguiente salto para las rutas, incluida la información de interfaz y de capa 2. Cisco Express Forwarding es el mecanismo de reenvío más rápido y la opción más utilizada en los routers Cisco.

En las figuras 1 a 3, se muestran las diferencias entre los tres mecanismos de reenvío de paquetes. Suponga que hay un flujo de tráfico que consta de cinco paquetes que van hacia el mismo destino. Como se muestra en la figura 1, con el switching de procesos, la CPU debe procesar cada paquete en forma individual. Compare esto con el switching rápido, el cual se muestra en la figura 2. Con el switching rápido, observe que el switching de procesos se aplica solo al primer paquete de un flujo, el cual se agrega a la caché de switching rápido. Los cuatro paquetes siguientes se procesan rápidamente según la información de la caché de switching rápido. Por último, en la figura 3, se observa que CEF crea la FIB y las tablas de adyacencia una vez que se converge la red. Los cinco paquetes se procesan rápidamente en el plano de datos.

Una analogía frecuente que se usa para describir los tres mecanismos de reenvío de paquetes es la siguiente:

  • El switching de procesos resuelve un problema realizando todos los cálculos matemáticos, incluso si los problemas son idénticos.
  • El switching rápido resuelve un problema realizando todos los cálculos matemáticos una vez y recuerda la respuesta para los problemas posteriores idénticos.
  • CEF soluciona todos los problemas posibles antes de tiempo en una hoja de cálculo.

Figura 1

Figura 2

 Figura 3

Los routers eligen las mejores rutas( 5)

Los routers eligen las mejores rutas

Las funciones principales de un router son las siguientes:

  • Determinar la mejor ruta para enviar paquetes.
  • Reenviar paquetes a su destino.

El router usa su tabla de routing para encontrar la mejor ruta para reenviar un paquete. Cuando el router recibe un paquete, analiza la dirección de destino del paquete y usa la tabla de routing para buscar la mejor ruta hacia esa red. La tabla de routing también incluye la interfaz que se debe usar para reenviar los paquetes a cada red conocida. Cuando se encuentra una coincidencia, el router encapsula el paquete en la trama de enlace de datos de la interfaz de salida, y el paquete se reenvía hacia el destino.

Un router puede recibir un paquete encapsulado en un tipo de trama de enlace de datos y reenviarlo por una interfaz que usa otro tipo de trama de enlace de datos. Por ejemplo, un router puede recibir un paquete en una interfaz Ethernet, pero debe reenviarlo por una interfaz configurada con el protocolo punto a punto (PPP). La encapsulación de enlace de datos depende del tipo de interfaz en el router y del tipo de medio al que se conecta. Las distintas tecnologías de enlace de datos a las que se puede conectar un router incluyen Ethernet, PPP, Frame Relay, DSL, tecnología de cable y tecnología inalámbrica (802.11, Bluetooth, etc.).

En la animación de la ilustración, se sigue un paquete desde la computadora de origen hasta la computadora de destino. Debe observarse que el router es responsable de encontrar la red de destino en su tabla de enrutamiento y reenviar el paquete hacia su destino. En este ejemplo, el router R1 recibe el paquete encapsulado en una trama de Ethernet. Después de desencapsular el paquete, el R1 usa la dirección IP de destino del paquete para buscar una dirección de red que coincida en su tabla de routing. Luego de encontrar una dirección de red de destino en la tabla de enrutamiento, R1 encapsula el paquete dentro de una trama PPP y reenvía el paquete a R2. El R2 realiza un proceso similar.

Nota: los routers usan rutas estáticas y protocolos de routing dinámico para descubrir redes remotas y crear sus tablas de routing.

Los routers interconectan redes Lectura 4

Figura 1

La mayoría de los usuarios desconocen la presencia de varios routers en su propia red o en Internet. Los usuarios esperan poder acceder a páginas web, enviar correo electrónico y descargar música, sin importar si el servidor al que acceden está en su propia red o en otra. Los profesionales de redes saben que es el router el que se encarga del reenvío de paquetes de una red a otra, desde el origen inicial hasta el destino final.

Un router conecta varias redes, lo que significa que posee varias interfaces, cada una de las cuales pertenece una red IP diferente. Cuando un router recibe un paquete IP en una interfaz, determina qué interfaz debe usar para reenviar el paquete hacia el destino. La interfaz que usa el router para reenviar el paquete puede ser el destino final o una red conectada a otro router que se usa para llegar a la red de destino.

En la animación de la figura 1, se observa que el R1 y el R2 son responsables de recibir el paquete en una red y reenviarlo desde otra red hacia la red de destino.

Generalmente, cada red a la que se conecta un router requiere una interfaz separada. Estas interfaces se usan para conectar una combinación de redes de área local (LAN) y redes de área extensa (WAN). Por lo general, las LAN son redes Ethernet que contienen dispositivos como computadoras, impresoras y servidores. Las WAN se usan para conectar redes a través de un área geográfica extensa. Por ejemplo, las conexiones WAN suelen utilizarse para conectar una LAN a la red del proveedor de servicios de Internet (ISP).

Observe que cada sitio de la figura 2 requiere el uso de un router para interconectarse a otros sitios. Incluso la oficina doméstica requiere un router. En esta topología, el router ubicado en la oficina doméstica es un dispositivo especializado que lleva a cabo varios servicios para la red doméstica.

Figura 2

Los routers son computadoras (3)

 Lectura complementaría 3

Para que la mayoría de los dispositivos con capacidad de red funcionen (por ejemplo, las computadoras, las tabletas y los smartphones), estos requieren los siguientes componentes, como se muestra en la Figura 1:

  • Unidad central de procesamiento (CPU)
  • Sistema operativo (OS)
  • Memoria y almacenamiento (RAM, ROM, NVRAM, flash, disco duro)

Básicamente, los routers son computadoras especializadas. Estos requieren una CPU y una memoria para almacenar datos de forma temporal y permanente a fin de ejecutar las instrucciones del sistema operativo, como la inicialización del sistema, las funciones de routing y de switching.

Nota: los dispositivos de Cisco utilizan el sistema operativo Internetwork (IOS) de Cisco como software de sistema.

La memoria del router se clasifica como volátil o no volátil. La memoria volátil pierde su contenido cuando se apaga el dispositivo, mientras que la memoria no volátil no pierde su contenido cuando se apaga el dispositivo.

En la tabla de la figura 2, se resumen los tipos de memoria de router, la volatilidad, y se proporcionan ejemplos de lo que se almacena en cada una.

                                                                     Figura 2

A diferencia de las computadoras, los routers no tienen adaptadores de video o de tarjeta de sonido. En cambio, los routers cuentan con tarjetas de interfaz de red y puertos especializados para interconectar los dispositivos a otras redes. En la figura 3, se identifican algunos de estos puertos e interfaces.

                                                                             Figura 3

¿Por qué es necesario el routing? (2)

¿Por qué es necesario el routing?

¿Cómo es que se logra acceder a la información deseada en pocos segundos haciendo clic en un enlace en un navegador web? Si bien existen muchos dispositivos y tecnologías que trabajan juntos de forma colaborativa para lograr esto, el dispositivo principal es el router. En pocas palabras, un router conecta una red con otra red.

La comunicación entre redes no sería posible sin un router que determine la mejor ruta hacia el destino y que reenvíe el tráfico al router siguiente en esa ruta. El router es responsable del routing del tráfico entre redes.

En la topología de la figura, los routers interconectan las redes en los diferentes sitios. Cuando un paquete llega a una interfaz del router, este utiliza la tabla de routing para determinar cómo llegar a la red de destino. El destino de un paquete IP puede ser un servidor web en otro país o un servidor de correo electrónico en la red de área local. Es responsabilidad de los routers entregar esos paquetes de forma eficaz. La efectividad de las comunicaciones de internetwork depende, en gran medida, de la capacidad de los routers de reenviar paquetes de la manera más eficiente posible.

Características de una red (1)

Las redes tuvieron un impacto considerable en nuestras vidas. Estas cambiaron la forma en que vivimos, trabajamos y jugamos.

Las redes nos permiten comunicarnos, colaborar e interactuar como nunca antes. Utilizamos la red de distintas formas, entre ellas las aplicaciones web, la telefonía IP, la videoconferencia, los juegos interactivos, el comercio electrónico, la educación y más.

Como se muestra en la ilustración, existen muchas características clave relacionadas con las estructuras y el rendimiento a las cuales nos referimos cuando hablamos de redes:

  • Topología: existen topologías físicas y lógicas. La topología física es la disposición de los cables, los dispositivos de red y los sistemas finales. Esta describe la forma en que los dispositivos de red se interconectan con los hilos y cables. La topología lógica es la ruta por la cual se transfieren los datos en una red. Describe cómo aparecen conectados los dispositivos de red a los usuarios de la red.
  • Velocidad: la velocidad mide la velocidad de datos de un enlace dado en la red en bits por segundo (b/s).
  • Costo: el costo indica el gasto general de la adquisición de componentes de red, así como de la instalación y el mantenimiento de la red.
  • Seguridad: la seguridad indica el nivel de protección de la red, incluida la información que se transmite a través de esta. El tema de la seguridad es importante, y las técnicas y las prácticas están en constante evolución. Siempre tenga en cuenta la seguridad cuando se tomen medidas que afecten la red.
  • Disponibilidad: la disponibilidad es la probabilidad de que la red esté disponible para ser utilizada cuando resulte necesario.
  • Escalabilidad: la escalabilidad indica la facilidad con la que la red puede admitir más usuarios y requisitos de transmisión de datos. Si un diseño de red está optimizado para cumplir solo con los requisitos actuales, puede resultar muy difícil y costoso satisfacer nuevas necesidades cuando la red crezca.
  • Confiabilidad: la confiabilidad indica la fiabilidad de los componentes que crean la red, como los routers, los switches, las computadoras y los servidores. A menudo, la confiabilidad se mide como la probabilidad de fallas o como el tiempo medio entre fallas (MTBF).

Estas características y atributos proporcionan un medio para comparar distintas soluciones de redes.

Nota: si bien el término “velocidad” se utiliza comúnmente para referirse al ancho de banda de red, no es del todo preciso. La velocidad propiamente dicha a la que se transmiten los bits no varía en el mismo medio. La diferencia en el ancho de banda se debe a la cantidad de bits transmitidos por segundo, no a la velocidad a la que se trasladan a través del medio cableado o inalámbrico.