Ethernet

 

Las diferencias que existen entre Ethernet estándar, Fast Ethernet, Gigabit Ethernet y 10 Gigabit Ethernet tienen lugar en la capa física.

 La Ethernet se rige por los estándares IEEE 802.3. Actualmente, se definen cuatro velocidades de datos para el funcionamiento con cables de fibra óptica y de par trenzado:

10 Mbps – Ethernet 10Base-T

100 Mbps – Fast Ethernet

1000 Mbps – Gigabit Ethernet

10 Gbps – 10 Gigabit Ethernet

 

Si bien existe una gran cantidad de implementaciones de Ethernet diferentes para estas diversas velocidades de transmisión de datos, aquí sólo se presentarán las más comunes. La figura muestra algunas de las características de la Ethernet.

 En esta sección se analizará la porción de Ethernet que opera en la capa física, comenzando por 10Base-T y continuando con las variedades de 10 Gbps.

 
 
 
 

Las principales implementaciones de 10 Mbps de Ethernet incluyen:

10BASE5 con cable coaxial Thicknet

10BASE2 con cable coaxial Thinnet

10BASE-T con cable de par trenzado no blindado Cat3/Cat5

Las primeras implementaciones de Ethernet, 10BASE5 y 10BASE2 utilizaban cable coaxial en un bus físico. Dichas implementaciones ya no se utilizan y los más recientes estándares 802.3 no las admiten.

Ethernet de 10 Mbps – 10BASE-T

La 10BASE-T utiliza la codificación Manchester para dos cables de par trenzado no blindado. Las primeras implementaciones de la 10BASE-T utilizaban cableado Cat3. Sin embargo, el cableado Cat5 o superior es el que se utiliza generalmente en la actualidad.

La Ethernet de 10 Mbps se considera como la Ethernet clásica y utiliza una topología en estrella física. Los enlaces de Ethernet 10BASE-T pueden tener hasta 100 metros de longitud antes de que requieran un hub o repetidor.

La 10BASE-T utiliza dos pares de cables de cuatro pares y finaliza en cada extremo con un conector RJ-45 de 8 pins. El par conectado a los pins 1 y 2 se utiliza para transmitir y el par conectado a los pins 3 y 6 se utiliza para recibir. La figura muestra la salida de pins RJ45 utilizada con Ethernet 10BASE-T.

La 10BASE-T generalmente no se elige para instalaciones de LAN nuevas. Sin embargo, todavía existen actualmente muchas redes Ethernet 10BASE-T. El reemplazo de los hubs por los switches en redes 10BASE-T aumentó notablemente la velocidad de transmisión (throughput) disponible para estas redes y le otorgó a la Ethernet antigua una mayor longevidad. Los enlaces de 10BASE-T conectados a un switch pueden admitir el funcionamiento tanto half-duplex como full-duplex.

 
 

Dispositivos finales

 

 

Los dispositivos de red con los que la gente está más familiarizada se denominan dispositivos finales. Estos dispositivos constituyen la interfaz entre la red humana y la red de comunicación subyacente. Algunos ejemplos de dispositivos finales son:

    1.-Computadoras (estaciones de trabajo, computadoras portátiles, servidores de  archivos, servidores Web, Servidores ftp, etc.)

    2.-Impresoras de red.

    3.-Teléfonos VoIP.

    4.-Cámaras de seguridad.

    5.-Dispositivos móviles de mano (como escáneres de barras inalámbricos,                         asistentes digitales personales (PDA)).

 

En el contexto de una red, los dispositivos finales se denominan host. Un dispositivo host puede ser el origen o el destino de un mensaje transmitido a través de la red. Para distinguir un host de otro, cada host en la red se identifica por una dirección. Cuando un host inicia una comunicación, utiliza la dirección del host de destino para especificar dónde debe ser enviado el mensaje.

 En las redes modernas, un host puede funcionar como un cliente, como un servidor o como ambos. El software instalado en el host determina qué rol representa en la red.

Los servidores son hosts que tienen software instalado que les permite proporcionar información y servicios, como e-mail o páginas Web, a otros hosts en la red.

Los clientes son hosts que tienen software instalado que les permite solicitar y mostrar la información obtenida del servidor.

NAT para IPv4

Todas las direcciones IPv4 públicas que se usan en Internet deben registrarse en un registro regional de Internet (RIR). Las organizaciones pueden arrendar direcciones públicas de un proveedor de servicios. El titular registrado de una dirección IP pública puede asignar esa dirección a un dispositivo de red.

Con un máximo teórico de 4300 millones de direcciones, el espacio de direcciones IPv4 es muy limitado. Cuando Bob Kahn y Vint Cerf desarrollaron por primera vez la suite de protocolos TCP/IP que incluía IPv4 en 1981, nunca imaginaron en qué podría llegar a convertirse Internet. En aquel entonces, la computadora personal era, en la mayoría de los casos, una curiosidad para los aficionados, y todavía faltaba más de una década para la aparición de la World Wide Web.

Con la proliferación de los dispositivos informáticos personales y la llegada de la World Wide Web, pronto resultó evidente que los 4300 millones de direcciones IPv4 no serían suficientes. La solución a largo plazo era el protocolo IPv6, pero se necesitaban soluciones más inmediatas para abordar el agotamiento de direcciones. A corto plazo, el IETF implementó varias soluciones, entre las que se incluía la traducción de direcciones de red (NAT) y las direcciones IPv4 privadas definidas en RFC 1918. En este capítulo, se analiza cómo se utiliza NAT combinada con el espacio de direcciones privadas para conservar y usar de forma más eficaz las direcciones IPv4, a fin de proporcionar acceso a Internet a las redes de todos los tamaños.

Espacio de direcciones IPv4 privadas

No existen suficientes direcciones IPv4 públicas para asignar una dirección única a cada dispositivo conectado a Internet. Las redes suelen implementarse mediante el uso de direcciones IPv4 privadas, según se definen en RFC 1918. En la figura siguiente, se muestra el rango de direcciones incluidas en RFC 1918. Es muy probable que la computadora que utiliza para ver este curso tenga asignada una dirección privada.

Nota: Ponemos a sus disposición el documento original del rfc 1918 es muy interesante se le recomienda leerlo. LEER MÁS 

Estas direcciones privadas se utilizan dentro de una organización o un sitio para permitir que los dispositivos se comuniquen localmente. Sin embargo, como estas direcciones no identifican empresas u organizaciones individuales, las direcciones privadas IPv4 no se pueden enrutar a través de Internet. Para permitir que un dispositivo con una dirección IPv4 privada acceda a recursos y dispositivos fuera de la red local, primero se debe traducir la dirección privada a una dirección pública.

Como se muestra en la figura siguiente NAT proporciona la traducción de direcciones privadas a direcciones públicas. Esto permite que un dispositivo con una dirección IPv4 privada acceda a recursos fuera de su red privada, como los que se encuentran en Internet. La combinación de NAT con las direcciones IPv4 privadas resultó ser un método útil para preservar las direcciones IPv4 públicas. Se puede compartir una única dirección IPv4 pública entre cientos o incluso miles de dispositivos, cada uno configurado con una dirección IPv4 privada exclusiva.

Sin NAT, el agotamiento del espacio de direcciones IPv4 habría ocurrido mucho antes del año 2000. Sin embargo, NAT presenta algunas limitaciones, las cuales se analizan más adelante en este capítulo. La solución al agotamiento del espacio de direcciones IPv4 y a las limitaciones de NAT es la transición final a IPv6.

¿Qué es NAT?

NAT tiene muchos usos, pero el principal es conservar las direcciones IPv4 públicas. Esto se logra al permitir que las redes utilicen direcciones IPv4 privadas internamente y al proporcionar la traducción a una dirección pública solo cuando sea necesario. NAT tiene el beneficio adicional de proporcionar cierto grado de privacidad y seguridad adicional a una red, ya que oculta las direcciones IPv4 internas de las redes externas.

Los routers con NAT habilitada se pueden configurar con una o más direcciones IPv4 públicas válidas. Estas direcciones públicas se conocen como “conjunto de NAT”. Cuando un dispositivo interno envía tráfico fuera de la red, el router con NAT habilitada traduce la dirección IPv4 interna del dispositivo a una dirección pública del conjunto de NAT. Para los dispositivos externos, todo el tráfico entrante y saliente de la red parece tener una dirección IPv4 pública del conjunto de direcciones proporcionado.

En general, los routers NAT funcionan en la frontera de una red de rutas internas. Una red de rutas internas es aquella que tiene una única conexión a su red vecina, una entrada hacia la red y una salida desde ella. En el ejemplo de la ilustración, el R2 es un router de frontera. Visto desde el ISP, el R2 forma una red de rutas internas.

Cuando un dispositivo dentro de la red de rutas internas desea comunicarse con un dispositivo fuera de su red, el paquete se reenvía al router de frontera. El router de frontera realiza el proceso de NAT, es decir, traduce la dirección privada interna del dispositivo a una dirección pública, externa y enrutable.

Nota: la conexión al ISP puede utilizar una dirección privada o pública compartida entre clientes. 

Terminología de NAT

Según la terminología de NAT, la red interna es el conjunto de redes sujetas a traducción. La red externa se refiere a todas las otras redes.

Al utilizar NAT, las direcciones IPv4 se designan de distinto modo, según si están en la red privada o en la red pública (Internet), y si el tráfico es entrante o saliente.

NAT incluye cuatro tipos de direcciones:

  • Dirección local interna
  • Dirección global interna
  • Dirección local externa
  • Dirección global externa

Al determinar qué tipo de dirección se utiliza, es importante recordar que la terminología de NAT siempre se aplica desde la perspectiva del dispositivo con la dirección traducida:

  • Dirección interna: la dirección del dispositivo que se traduce por medio de NAT.
  • Dirección externa: la dirección del dispositivo de destino.

NAT también usa los conceptos de local o global con relación a las direcciones:

  • Dirección local: cualquier dirección que aparece en la porción interna de la red.
  • Dirección global: cualquier dirección que aparece en la porción externa de la red.

En la ilustración, la PC1 tiene la dirección local interna 192.168.10.10. Desde la perspectiva de la PC1, el servidor web tiene la dirección externa 209.165.201.1. Cuando se envían los paquetes de la PC1 a la dirección global del servidor web, la dirección local interna de la PC1 se traduce a 209.165.200.226 (dirección global interna). En general, la dirección del dispositivo externo no se traduce, ya que suele ser una dirección IPv4 pública.

Observe que la PC1 tiene distintas direcciones locales y globales, mientras que el servidor web tiene la misma dirección IPv4 pública en ambos casos. Desde la perspectiva del servidor web, el tráfico que se origina en la PC1 parece provenir de 209.165.200.226, la dirección global interna.

El router NAT, el R2 en la ilustración, es el punto de demarcación entre las redes internas y externas, así como entre las direcciones locales y globales.

Configuración del dispositivo intermediario(Switch 2960)

Práctica parte II

1.- Abra su sesión de pkt

2.- Colocar el switch 2960 y el dispositivo final para configurarlo.

3.- Seleccione un cable de consola(cable color azul) y conectar en el puerto rs-232 del dispositivo final y al puerto de consola del switch.

4.-Posteriormente presione el dispositivo final, ahora seleccione desktop y de click en el tercer botón llamado terminal. Observe una configuración solo presione Ok  y estará dentro del sistema operativo del switch. 

5.- Observe el promt Switch> si es correcto ingrese el primer comando que debe utilizar es ENABLE  el resultado será que el promt cambia de símbolo por  switch#

6.- Ahora el siguiente comando que debe utilizar es  configure terminal y el resultado de salida será switch(config)#

7.- Perfecto use el siguiente comando interface vlan1 y la salida será 
Switch(config-if)#

8.-Switch(config-if)#ip address 148.218.50.1 255.255.0.0

9.- Por ultimo el comando no shutdown el resultado de salida es :

Switch(config-if)#

%LINK-5-CHANGED: Interface Vlan1, changed state to up

*************************************************************************

Switch>enable

Switch#configure terminal

Enter configuration commands, one per line. End with CNTL/Z.

Switch(config)#interface vlan1

Switch(config-if)#ip address 148.218.50.1 255.255.0.0

Switch(config-if)#no shutdown

Switch(config-if)#

%LINK-5-CHANGED: Interface Vlan1, changed state to up

**********************************************************************

Ahora para ver la configuración utilizar el Modo de ejecución de usuario ingrese el comando show ip interface brief y se listará la información de todos los puertos. Verifique la interface vlan1 debe de tener la configuración de la ip y la mascara de red.

Si llego hasta aquí felicidades ahora subir el archivo al servidor ftp.   

 

 

 

Las Apps

Hasta antes de la aparición de las tabletas y celulares inteligentes, todos los programas radicaban en el computador anclado al escritorio del usurio. Considerada como la revolución más importante, “la movilidad” de las redes G2, G3 y en breve G4 y las que siguen, están forzando a las empresas a adoptar medidas de “mediación” para no aislarse en un mundo altamente tecnificado donde las operaciones sociales se van cada vez más sistematizando.

Bajo este hecho no es un lujo “el desarrollo de una APP”, para el negocio o los servicios profesionales. GeoCity Place está desarrollando sistemas integrales y con estratégias muy flexibles para agilizar el proceso cultural que permita a los pequeños comercios transitar en su cultura hacia lo digital.